

MobotWare – A Plug-in Based Framework for Mobile Robots

Anders B. Beck*
,
**, Nils Axel Andersen*, Jens Christian Andersen* and Ole Ravn*

*Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark

(e-mails: abb@elektro.dtu.dk, naa@elektro.dtu.dk, or@elektro.dtu.dk, jca@elektro.dtu.dk)

**Centre for Robot Technology, Danish Technological Institute, Odense, Denmark,

Abstract: This paper describes a plug-in based software framework developed at Automation and
Control, DTU Electrical Engineering. The software has been used for education and research in mobile
robotics for the last decade. Important design criteria have been real-time performance of the control
level, easy integration of sensors, fast porting to new robots and core system stability and maintainability
in an undisciplined programming environment.

Real-time performance is assured by using RTAI-Linux; core stability is obtained by using plug-ins for
user developed modules. The plug-in based module structure combined with inter-module
communication based on TCP/IP sockets and human readable XML-protocol makes it easy to use the
system on a wide range of hardware platforms, configurations and computer platform distributions. The
framework has until now been interfaced to 7 different hardware platforms and has enabled many
application i.e. robust navigation in an orchard with an autonomous tractor (Andersen,2010). Furthermore
by providing a simple scripting robot control language the system also supports use by non-technicians.

Keywords: Architectures, Autonomous mobile robots, Multisensor integration, Hierarchical systems,
Real-time systems, Robot control, Reusable robotic software, Robotic framework

1. INTRODUCTION

Writing a software framework for autonomous mobile robot
requires an effort that goes beyond one project. This means
that it is important to control development over a longer
period. The software development at universities is mostly
based on bachelor, master and PhD projects along with short
term externally funded projects. This is a very dynamic
environment in which it is difficult to enforce strict software
development methods and rules. Often this means that the
software written in a project is abandoned when the student
leaves after finishing his or her project, leading to rewriting
the same functionality again and again not only in different
places in the world but even at the same department.

Automation and Control, DTU Electrical Engineering have
researched and built mobile robots since the early 1980’s. In
1999, for the purpose of teaching and supporting thesis-based
research, a Small Mobile Robot (SMR) was developed and
built in 12 units. The SMR is a differential driven platform;
using a standard small PC motherboard connected to custom
motor control and sensor hardware. The system runs standard
Linux and connects to the institute network through WiFi
wireless network.

The foremost task for the SMR was teaching in real-time
control of hardware systems, where engineering students
competed in sensor signal conditioning, odometry calibration
and finally navigating the SMR through a dynamic obstacle
course.

To motivate students and research staff to avoid writing
mobile robot software from scratch repeatedly a real-time
motion control, SMRdemo and an elaborate scripting
language, the SMR Control Language (Andersen et al., 2004)
was developed. After nearly a decade of development, the
remarkably sticky name SMRdemo was changed to Mobile
Robot Controller (MRC).

Through years of research projects, the MobotWare
architecture evolved by introducing the Automation Robot
Servers (AURS), a plug-in based server framework for
processing complex sensors, such as Laser scanners and
cameras in a more comprehensive soft real-time environment.
AURS also hosts planning algorithms and high-level mission
management systems.

This paper introduces the MobotWare framework and
introduces how the unique combination of hard real-time safe
temporal and functional hierarchical decomposition has
formed a portable, flexible and lightweight framework that
provides stability and performance for research in robot
systems solutions and integration enabling real applications
on mobile robotics to be developed.

2. RELATED WORK

Research in mobile robot architectural frameworks received
much attention in the days of the pioneering work of Brooks
(1986) and Albus (1989), but is still an active research area.
Particularly within systems integration and debugging there
is much left to be done (Coste-Maniere et al., 2000).

MobotWare is focused towards research on integration of the
framework architecture and developing a functional
framework for different platforms and applications.

In the last decade, several research groups have tried to
address the problem of collaboration in mobile robot research
through open source projects e.g. the Player project (Vaughan
et al.,2003), the CARMEN toolkit (Montemerlo et al.,2003),
the OROCOS project (Bruyninckx et al.,2001), and recently
followed by the ROS project (Quigley et al., 2009). Common
for the projects is that they focus on comprehensive hardware
and device abstraction, but leave the control architecture open
for the users, thus stimulating community collaboration on
low-level signal processing algorithms, but not system
architectures for solving the complex tasks of mobile robots.

With exception of the ROS project, the international robotics
community has recently turned its focus back towards
development and standards for robotic systems architectures,
where the most visible effort recently has been the Joint
Architecture for Unmanned Systems (JAUS) project. The
release of the NASA origined CLARAty architecture to open
source (Nesnas et al.,2006), is another evident sign that
research again addresses the challenges of layered
architectures to solve the remaining complex challenges of
mobile robots.

CLARAty follows the modern architectural doctrine of
decomposing hierarchically by functional abstraction. The
approach is comparable to the popular three-tiered
architecture (3T) (Bonasso et al.,1997), that features a
planning layer, a behavioural execution layer and a
intermediate mediation layer. The decomposition of the
MobotWare architecture is also somewhat similar, but a
distinctive difference is that MobotWare follows two
dimensions of decomposition: temporal and functional.

The temporal dimension divides MobotWare in two sections,
a hard and a soft real-time constrained section (Fig. 1).

Secondly a functional decomposition decomposes the
architecture in levels of increasing abstraction, from
hardware abstraction layer to reactive execution layer to
deliberative perception and planning layers. This
decomposition has lead to interesting research in the area of
crossing the hierarchical boundary between hard and soft
real-time without compromising hard real-time performance
(Beck et al., 2009)

3. SYSTEM OVERVIEW

The MobotWare framework has three core modules:

• Robot Hardware Daemon (RHD) Flexible hardware
abstraction layer for real-time critical sensors

• Mobile Robot Controller (MRC) Real-time Closed-loop
controller of robot motion and mission execution

• Automation Robot Servers (AURS) Advanced framework
for processing of complex sensors and non real-time
mission planning and management.

The modular architecture defines a role for each module in
the architecture. It forces developers to solve problems at the
levels where they origin and belong, as all data-reduction
must be handled at the level where the data is locally
available, rather than where a developer finds it most
convenient at a given time.

Modules are configured through XML files, which make
reconfiguring to changed hardware setups or new robots
quick and manageable.

Core components are connected through low latency TCP/IP
connections, that makes is possible to distribute the
MobotWare components across multiple computer platforms,
without the need of complex 3rd party communication
libraries. This could be a low-power platform for real-time
control and a high-performance platform for laser or vision
processing, or it could be a development module
conveniently running on the development machine, while all
other modules are performing on the actual robot platform.

Fig. 1. Overview of the MobotWare mobile robot control framework.

All communication protocols, except the RHD real-time
sensor interface, are implemented in human-readable XML,
which is efficient for debugging and testing, yet powerful for
inter-process communications due to efficient and readily
available parsers. By design decision, sensor data must be
processed at the source and only reduced data are distributed,
in opposition black board database architectures. It makes the
development doctrine slightly strict, but improves stability in
a university development environment.

Development and research of new functionality within the
framework, is done through a plug-in interface on all system
levels. This ensures that students and researchers have a well
documented entry-point into the framework that minimizes
time spent on learning a complex system. Another strong
advantage is that core stability of the MobotWare framework
is always ensured, as failed or uncompleted projects can
easily be removed – and successful projects can be saved!

4. ROBOT HARDWARE DAEMON

The Robot Hardware Daemon (RHD), a real-time device
server, has been developed to cope with the increasing
diversity of the supported mobile robot platforms. In
opposition to related initiatives such as Player or CARMEN,
RHD is limited to be a lightweight hard real-time hardware
interface. Signal processing at RHD level are limited to
protocol interaction and simple security functions as
emergency stops.

RHD is a real-time synchronized variable database. The
variable database structure provides great flexibility, but it
also helps to enforce a clean cut interface between the various
hardware formats and a user-manageable API without
enforcing specific device abstractions. RHD is also the
primary real-time control scheduler in the MobotWare
framework, so much effort was used to analyze the behaviour
of scheduling mechanisms in Linux, and to create a robust,
lightweight and flexible real-time safe implementation.

There is a balance of keeping compatibility to a traditional
desktop Linux distribution and meeting the requirement of
hard real-time performance. As described in the scheduler
section, both objectives have been achieved.

RHD consists of a set of core components, and a range of
specific hardware driver plug-ins. The core components
create the basis for a variable database, TCP/IP server and the
real-time scheduler. Plug-ins creates the support of hardware
devices, by managing hardware I/O, pre/post-processing and
database interface.

All setup of RHD is based on a XML configuration file,
which contains the setup parameters for the core components
and plug-ins to accommodate any supported hardware
configuration.

4.1 Variable Database

The variable database defines the functionality of RHD.
Upon initialization, all plug-in modules create the I/O
variables they need; subsequently the database is locked

when going into hard real-time mode. The database itself is
based on a variable symbol table and an associated data area.

• The symbol table defines the static information
regarding the variables and bookkeeping information.

• The data area is one continuous memory pool,
containing the dynamic data and a time stamp.

4.2 TCP/IP Server

As the only service connection in MobotWare, the RHD
protocol is binary to improve performance in the real-time
environment. To minimize the data-flow, the symbol table is
only transferred to a client in a initial hand-shake. After the
handshake, only dynamic data is exchanged.

Only one master client is able to write to RHD variables, but
multiple read-clients are supported to give data access for the
non real-time layers and operator interface.

4.3 Real-time Scheduler

Besides being a networked variable database, RHD is also the
main real-time scheduler for low level robot control
applications, such as MRC. The MobotWare framework is
expanding to support new robots and as some of these
hardware platforms are big, powerful, and heavy, fault
tolerance and especially real-time performance are critical.
Hard real-time performance is not generically supported by
the Linux kernel, as there is no support for kernel
preemption. In projects, as RTAI (Mantegazza et al., 2000)
and RT-Linux (Bruyninckx, 2002), this is solved by patching
the kernel with a second scheduler, which allows tasks to
work in kernel priority levels and with full kernel
preemption. Our RT-implementation of choice is the Linux
Real-Time Application Interface (RTAI). Linux itself,
provide some means of achieving soft real-time performance.
RHD is capable of operating satisfactory on a standard Linux
distribution and with enhanced stability and real-time
performance using the RTAI scheduler.

All scheduling in Linux happen with the period of the
scheduler, the so-called jiffy (Abbott, 2003). Previously in
Linux, this frequency was normally set to 100Hz, but
seemingly the default of the vanilla kernel is now 250 Hz.
This creates a period of 4 ms and makes it impossible to
obtain a steady 10 ms control cycle. Fig. 2 show the timing of
a Linux Interval-timer interrupt, set at a 10 ms target period
on an X86 VIA C-3 platform and on an Atmel 130 MHz
AVR32 NGW100 Linux evaluation board, both with a 250
Hz kernel scheduling frequency.

When trying to achieve a period, that is not divisible with the
scheduler period, the timer will simply alternate between the
two closest scheduler ticks and thus create an accurate
average timing period. This might be reasonable, if the timer
period is much larger than the scheduler period, but for real-
time, high frequency robot control it is highly undesired.

When compiling the 2.6 Linux kernel, it is possible to set the
scheduler frequency for 100, 250, 300 and 1000 Hz. To run
RHD using the Linux scheduler, the scheduler loop period

must be carefully selected as a multiple of the Linux
scheduling period.

Fig 2. Scheduler periods with 10 ms target on a kernel with 250 Hz
scheduling frequency. Timer periods alternate between 8 and 12 ms to obtain
an average 10 ms period.

For hard real-time performance RHD uses the LXRT module
and RT-FIFOs from RTAI to obtain real-time scheduling in
user space.

4.4 Plug-in architecture

Specific hardware drivers are implemented through a plug-in
structure where each plug-in creates the I/O control variables
in the variable database. Control variables are used to transfer
data from and to hardware devices, but also offer the
possibility for configuring the driver plug-in dynamically.

4.4.1 AuSerial plug-in

An important is feature of RHD is a simple and easy
configuration of new low level sensor devices. To make it
simple to add new devices to the interface bus, and easy to do
simple reconfigurations, the AuSerial plug-in was developed.
Using AuSerial, newly developed devices can be introduced
in the entire MobotWare architecture and configured on SMR
RS-485 bus by a XML configuration and without writing a
single line of C-code.

4.4.2 Other hardware plug-ins

Besides the AuSerial plug-in, a number of hardware plug-ins
has been written for RHD to support a range of hardware and
a simulator.

• Stage Simulator 2.1.1

• iRobot r-Flex interface

• RTK and NMEA GPS interface

• Crossbow IMU-400 and Fiber Optic Gyro

• HAKO tractor CAN-bus control interface

• Claas Axion tractor CAN-bus control interface

5. MOBILE ROBOT CONTROLLER

The mobile robot controller (MRC) is providing the basic
low level real-time control of the mobile robot platform. It
uses RHD (Robot Hardware Demon) as an interface to the
actual robot hardware. MRC has the following features

• Odometry

• Motion controller

• SMR-CL interpreter (Andersen, 2004)

• Socket interface to high level controllers

• XML-based socket interface to sensor servers

• Socket interface to RHD

• XML-based configuration file

• Calibration support for odometry, line-sensors and
distance sensors.

The odometry is based on wheel measurements and inertial
sensors e.g. gyros. It is configurable using an XML-based
configuration file for several kinematics: differential drive,
Ackerman steering and vehicles described with linear and

angular velocity (v, ω).
The motion controller provides the basic path control based
on odometry as well as sensor based movements for the
following SMR-CL commands:

• fwd point to point forward motion

• turn turn around center

• drive continuous linear motion

• turnr circular movement with given turning radius

• stop

• followline follow a line on the floor (painted or buried
wire depending on sensors)

• followwall follow a wall using e.g. infrared distance
sensors or laser scanner

Small Mobile Robot Control Language, SMR-CL (Andersen,
2004), (Jørgensen et al., 2008) is an interpreted language
intended for control of mobile robots. The language supports
sequences of basic robot actions with multiple criterions for
seamless motion gluing as well as standard mathematical
expressions. The system has two kinds of variables, system
variables that reflect the state of the vehicle and user
variables that are created the first time they are used in an
assignment clause. The language is intended to be used in the
tactical layer just over the control layer i.e. it is fast enough to
shift between control strategies and react to state changes in
real time. SMR-CL provides the bridge between the hard
real-time demands of the control layer and the soft real-time
demands of the planning (strategic) layer. The language may
be used in two ways either as scripts runs directly from text
files or as a command language through a socket interface.

6. AUTOMATION ROBOT SERVERS

Sensors with high data volume – like cameras and laser
scanners – usually require time consuming data processing.
This is not easily compatible with the real time requirements
of the motion control.

Each sensor is often used for more than one purpose, e.g. the
laser scanner may be used for detecting obstacles, for wall
following, for human detection and emergency stop. An
architecture, which supports sharing of sensor data, is
therefore essential.

More than one processor unit is often needed when
processing data from these high volume sensors. A
standardised communication interface is therefore beneficial.
In a university environment new functionality is often
developed by students. It is therefore important, that the
development can be done in independent groups and within a
limited time frame. The architecture and programming

interface must therefore be reasonably simple, and it must be
easy to add (and remove) the developed modules without
influencing other parts of the software.

The MobotWare solution to these challenges is a set of
servers called AURS. A typical AURS configuration consists
of a camera server, a laser scanner server and a mission
management server.

Each server consists of a server core that provides a number
of general services to the functional plug-ins.
These services include:

• Management for loading, unloading and configuring plug-
ins dynamically

• Communication services (socket based)

• Event handling (generation and implementation)

• Server wide shared plug-in variable tree

• Plug-in to plug-in communication

• Direct access to base plug-ins (like laser sensor plug-in and
pose history)

• API for common tools (like linear algebra, coordinate
conversion and image algorithms from openCV.

• Data logging and replay services

As an example the perception laser scanner server could be
configured as shown in Fig. 3. There is a plug-in to maintain
the recent robot pose in each of the maintained coordinate
systems (odometry and map coordinates), these are capable
of providing the robot pose at any given (sensor) time. The
laser scanner plug-in provides (raw) laser scanner range data
and the laser scanner pose – relative to the robot. The other
plug-ins uses the sensor data to create and maintain a specific
perception model.

Fig 3. The AURS structure, with server core and functional plug-ins

The communication to and from a plug-in (apart from the
internal plug-in to plug-in function calls) is handled by the
server core using XML based messages. Each plug-in handle
commands formatted into one or more XML tag types, and
thus can share the same server provided socket connection.

A plug-in can also trigger an event – an event could be that a
new lasers scan is available – the server may then be
configured to react by sending an XML command to other
plug-ins, e.g. to update the wall and obstacle model. Update
of the obstacle model could trigger a further event, e.g. to
start a new behaviour generation.
As described here, both sensor processing and part of the
perception model is handled in one server. This is intentional,
as the high volume data flow from the sensor plug-in to the
perception plug-in in this way is kept internally in the server.

The reduced data flow from the generated model is
communicated to other servers only.

The server structure allows both client-pull data flow – send a
command and get a reply – and server-push data flow, where
data is send as a response to an event. Timed events are
supported directly by the server core.
A large number of plug-ins are available, these include:

• a laser scanner plug-in, supporting Sick and Hokuyo
scanners,

• a camera device plug-in.

• a MRC interface plug-in for easy access to real time data
and behaviour commands

• a road detection plug-in using a slightly tilted laser scanner
(Andersen et al., 2006a)

• an obstacle detection plug-in using laser scanner data

• an obstacle detection plug-in using stereo camera data

• a road detection plug-in using single camera data
(Andersen et al., 2006b)

• a localization plug-in combining laser scanner and a-priori
map (Tjell et al., 2008)

• a plug-in that implements a rule based mission scheduler

• a mission manager plug-in

• an obstacle avoidance plug-in based on visibility graph.

Data recorded from laser scanner, camera, GPS and robot
pose can be replayed based on log files from each of the
relevant plug-ins and synchronized by the server core. The
replay ability eases development of especially perception
plug-ins significantly.

An operator interface is available to interact with all servers
and all plug-ins, and display also some of the more complex
data structures. An example from the operator display is
shown in Fig. 4.

Fig. 4. Operator interface example, illustrating traversable road (green) and
obstacles (purple) after treatment of the perception plug-ins.

7. APPLICATIONS

The MobotWare framework has been used with great success
in education and several research and innovation projects.
Using the plug-in structure of the real-time hardware daemon
(RHD) seven different hardware platforms have been
interfaced ranging from an 8 kg educational robot to the 7.5

tonne 240 bhp Claas Axion 840 tractor (Fig .6). This means
that systems based on CAN-bus, Profi-bus, RS232, RS485
and USB have been interfaced demonstrating the versatility
of RHD.

 Fig. 5. Autonomous grass cutting between orchard tree rows using
topological feature-based localization in tree rows through the MobotWare
framework.

The scalability obtained by having modules communicating
via sockets has been demonstrated by implementing a small
system on an Atmel 130 MHz AVR32 NGW100 Linux
evaluation board while vision intensive mobile robot systems
have been implemented using several computers.

The inclusion of the robot control language in the system
makes it programmable by non technicians and allows fast
implementation of test solutions.
The efficiency on the language is seen in our basic robot
course where the students have to make a C-solution and an
SMR-CL solution to the same problem. They use 10 times as
much time on the C-solution and score 30 to 40 % more
points in the SMR-CL solution during the final competition.

In the innovation project “Safe + Reliable - Further
Development of a Field Robot”, the MobotWare framework
was used to develop robust control of a field robot (Fig. 5).
The system implements a localization system based on fusion
of laser based tree row detection and gyro assisted odometry.
Autonomous driving in an orchard with 10 rows thus
including headland turns has been demonstrated. This shows
that the modular plug-in structure allows implementation of
complex robot control systems (Andersen et al., 2010).

Fig. 6. The Agrocom stereo vision equipped Claas AXION 840 runs
MobotWare for autonomous field operations.

8. CONCLUSION

The mobile robot software framework presented in this paper,
MobotWare, fulfils the requirements for a stable
comprehensive framework capable of utilizing and
controlling a large number of robot hardware platforms and
sensors. MobotWare consists of three distinct layers, the
RHD as the hardware abstraction layer, the MRC as the real-
time robot controller and the AURS a server structure for
quasi real-time perception and behaviour planning. The
framework has been developed over a number of years in a
university environment and been used in a large number of
courses, projects and applications.

REFERENCES

Abbott D., “Linux for Embedded and Real-time Applications”, Elsevier

Science, 2003.
Andersen N. A. & Ravn O., A Real-Time Control Language for Mobile

Robots, CIGR International Conference , Beijing 11-14 oct. 2004.
Andersen J. C., Blas M. R., Andersen N. A., Ravn O., Blanke M.,

Traversable terrain classification for outdoor autonomous robots using
single 2D laser scans, In: Integrated Computer-Aided Engineering, vol:

13(3), p. 223-232, IOS Press, Amsterdam., 2006
Andersen J. C., Andersen N. A., Ravn O., Vision Assisted Laser Scanner

Navigation for Autonomous Robots. In proceedings of the 10th

International Symposium on Experimental Robotics 2006 (ISER '06);
39, p. 111-120 Springer-Verlag Berlin, 2006.

Andersen J. C., Ravn O., Andersen N. A., Autonomous Rule-Based Robot
Navigation in Orchards, 7th Symposium on Intelligent Autonomous

Vehicles, Lecce, September , 2010
Albus, J. S.; McCain, H. G. & Lumia, R., NASA/NBS Standard Reference

Model for telerobot control system architecture (NASREM),
U.S. Dept. of Commerce, National Institute of Standards and
Technology, Gaithersburg, MD :, 1989, iv, 76 p.

Beck A. B., Andersen N. A., Ravn O., Mission Management for Mobile
Robots, Proc. of the fourth Swedish Workshop for Autonomous Robotics,
p. 76-77, Vesterås, Sweden, September 2009.

Bonasso, P. R.; Firby, J. R.; Gat, E.; Kortenkamp et al., Experiences with an
architecture for intelligent, reactive agents, Journal of Experimental and

Theoretical Artificial Intelligence, 1997, Vol.9 Issue.2-3, 237-256
Brooks, R. A., A Robust Layered Control System for a Mobile Robot, IEEE

Journal of Robotics and Automation, 1986, RA-2, 14-23
Bruyninckx H., Open robot control software: The OROCOS project, Proc.

of IEEE Int. conf. on Robotics and Automation, 2001.
Bruyninckx H., “Real-Time and Embedded Guide”, K.U.Leuven, Leuven,

2002.

Coste-Maniere, E. & Simmons, R., Architecture, the backbone of robotic
systems, IEEE International Conference on Robotics and Automation

(ICRA), 2000, Vol. 1, 67-72
Jørgensen R.N., Nørrremark M., Sørensen C.G., Andersen N.A. , Utilising

scripting lanquage for unmanned automated guided vehicles operating
within row crops, Computers and Electronics in Agriculture, vol 62(2),
p 190-203, 2008

Montemerlo M., Roy N., Thrun S.,Perspectives on Standardization in Mobile
Robot Programming: The Carnegie Mellon Navigation (CARMEN)
Toolkit, Proc. Of the IEEE/RSJ Int. Conf. On Intelligent Robots and

Systems ,Las Vegas, Nevada, Oct., 2003.
 Mantegazza P., Bianchi, E. , Dozioi, L. , et al., RTAI: Real-Time

Application Interface, Linux Journal, issue 72, p. 142-150, 2000.
Nesnas, I. A., Simmons, R., Gaines, D. ,et al., CLARAty: Challenges and

Steps Toward Reusable Robotic Software, International Journal of

Advanced Robotic Systems, 2006, Vol. 3, pp. 023-030
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T. B., Leibs, J.,

Wheeler, R. & Ng, A. Y., ROS: an open-source Robot Operating System
International Conference on Robotics and Automation, 2009

Tjell P., Hansen, S.. “Laser based navigation in orchard”. M.Sc. Thesis
Technical University of Denmark, 2008.

Vaughan R.T., Gerkey B.P., Howard, On device abstractions for portable,
reusable robot code Proc. Of the IEEE/RSJ Int. Conf. On Intelligent

Robots and Systems ,Las Vegas, Nevada, Oct., 2003.

