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Abstract: This paper describes a plug-in based software framework developed at Automation and 
Control, DTU Electrical Engineering. The software has been used for education and research in mobile 
robotics for the last decade. Important design criteria have been real-time performance of the control 
level, easy integration of sensors, fast porting to new robots and core system stability and maintainability 
in an undisciplined programming environment.  

Real-time performance is assured by using RTAI-Linux; core stability is obtained by using plug-ins for 
user developed modules. The plug-in based module structure combined with inter-module 
communication based on TCP/IP sockets and human readable XML-protocol makes it easy to use the 
system on a wide range of hardware platforms, configurations and computer platform distributions. The 
framework has until now been interfaced to 7 different hardware platforms and has enabled many 
application i.e. robust navigation in an orchard with an autonomous tractor (Andersen,2010). Furthermore 
by providing a simple scripting robot control language the system also supports use by non-technicians.  
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1. INTRODUCTION 

Writing a software framework for autonomous mobile robot 
requires an effort that goes beyond one project. This means 
that it is important to control development over a longer 
period. The software development at universities is mostly 
based on bachelor, master and PhD projects along with short 
term externally funded projects. This is a very dynamic 
environment in which it is difficult to enforce strict software 
development methods and rules. Often this means that the 
software written in a project is abandoned when the student 
leaves after finishing his or her project, leading to rewriting 
the same functionality again and again not only in different 
places in the world but even at the same department. 
 
Automation and Control, DTU Electrical Engineering have 
researched and built mobile robots since the early 1980’s. In 
1999, for the purpose of teaching and supporting thesis-based 
research, a Small Mobile Robot (SMR) was developed and 
built in 12 units. The SMR is a differential driven platform; 
using a standard small PC motherboard connected to custom 
motor control and sensor hardware. The system runs standard 
Linux and connects to the institute network through WiFi 
wireless network. 
 
The foremost task for the SMR was teaching in real-time 
control of hardware systems, where engineering students 
competed in sensor signal conditioning, odometry calibration 
and finally navigating the SMR through a dynamic obstacle 
course.  
 

To motivate students and research staff to avoid writing 
mobile robot software from scratch repeatedly a real-time 
motion control, SMRdemo and an elaborate scripting 
language, the SMR Control Language (Andersen et al., 2004) 
was developed. After nearly a decade of development, the 
remarkably sticky name SMRdemo was changed to Mobile 
Robot Controller (MRC). 
 
Through years of research projects, the MobotWare 
architecture evolved by introducing the Automation Robot 
Servers (AURS), a plug-in based server framework for 
processing complex sensors, such as Laser scanners and 
cameras in a more comprehensive soft real-time environment. 
AURS also hosts planning algorithms and high-level mission 
management systems.  
 
This paper introduces the MobotWare framework and 
introduces how the unique combination of hard real-time safe 
temporal and functional hierarchical decomposition has 
formed a portable, flexible and lightweight framework that 
provides stability and performance for research in robot 
systems solutions and integration enabling real applications 
on mobile robotics to be developed. 
 

2. RELATED WORK 

Research in mobile robot architectural frameworks received 
much attention in the days of the pioneering work of Brooks  
(1986) and Albus (1989), but is still an active research area. 
Particularly within systems integration and debugging there 
is much left to be done (Coste-Maniere et al., 2000).  
 



 
 

     

 

MobotWare is focused towards research on integration of the 
framework architecture and developing a functional 
framework for different platforms and applications. 
 
In the last decade, several research groups have tried to 
address the problem of collaboration in mobile robot research 
through open source projects e.g. the Player project (Vaughan 
et al.,2003), the CARMEN toolkit (Montemerlo et al.,2003), 
the OROCOS project (Bruyninckx et al.,2001), and recently 
followed by the ROS project (Quigley et al., 2009). Common 
for the projects is that they focus on comprehensive hardware 
and device abstraction, but leave the control architecture open 
for the users, thus stimulating community collaboration on 
low-level signal processing algorithms, but not system 
architectures for solving the complex tasks of mobile robots.      
 
With exception of the ROS project, the international robotics 
community has recently turned its focus back towards 
development and standards for robotic systems architectures, 
where the most visible effort recently has been the Joint 
Architecture for Unmanned Systems (JAUS) project. The 
release of the NASA origined CLARAty architecture to open 
source (Nesnas et al.,2006), is another evident sign that 
research again addresses the challenges of layered 
architectures to solve the remaining complex challenges of  
mobile robots.     
 
CLARAty follows the modern architectural doctrine of 
decomposing hierarchically by functional abstraction. The 
approach is comparable to the popular three-tiered 
architecture (3T) (Bonasso et al.,1997), that features a 
planning layer, a behavioural execution layer and a 
intermediate mediation layer. The decomposition of the 
MobotWare architecture is also somewhat similar, but a 
distinctive difference is that MobotWare follows two 
dimensions of decomposition: temporal and functional.  
 
The temporal dimension divides MobotWare in two sections, 
a hard and a soft real-time constrained section (Fig. 1). 

Secondly a functional decomposition decomposes the 
architecture in levels of increasing abstraction, from 
hardware abstraction layer to reactive execution layer to 
deliberative perception and planning layers. This 
decomposition has lead to interesting research in the area of 
crossing the hierarchical boundary between hard and soft 
real-time without compromising hard real-time performance 
(Beck et al., 2009) 

3. SYSTEM OVERVIEW 

The MobotWare framework has three core modules: 

• Robot Hardware Daemon (RHD) Flexible hardware 
abstraction layer for real-time critical sensors 

• Mobile Robot Controller (MRC) Real-time Closed-loop 
controller of robot motion and mission execution 

• Automation Robot Servers (AURS) Advanced framework 
for processing of complex sensors and non real-time 
mission planning and management. 

                                  
The modular architecture defines a role for each module in 
the architecture. It forces developers to solve problems at the 
levels where they origin and belong, as all data-reduction 
must be handled at the level where the data is locally 
available, rather than where a developer finds it most 
convenient at a given time. 
 
Modules are configured through XML files, which make 
reconfiguring to changed hardware setups or new robots 
quick and manageable.  
 
Core components are connected through low latency TCP/IP 
connections, that makes is possible to distribute the 
MobotWare components across multiple computer platforms, 
without the need of complex 3rd party communication 
libraries. This could be a low-power platform for real-time 
control and a high-performance platform for laser or vision 
processing, or it could be a development module 
conveniently running on the development machine, while all 
other modules are performing on the actual robot platform. 

 
 

Fig. 1.   Overview of the MobotWare mobile robot control framework.  

 



 
 

     

 

All communication protocols, except the RHD real-time 
sensor interface, are implemented in human-readable XML, 
which is efficient for debugging and testing, yet powerful for 
inter-process communications due to efficient and readily 
available parsers. By design decision, sensor data must be 
processed at the source and only reduced data are distributed, 
in opposition black board database architectures. It makes the 
development doctrine slightly strict, but improves stability in 
a university development environment. 
 
Development and research of new functionality within the 
framework, is done through a plug-in interface on all system 
levels. This ensures that students and researchers have a well 
documented entry-point into the framework that minimizes 
time spent on learning a complex system. Another strong 
advantage is that core stability of the MobotWare framework 
is always ensured, as failed or uncompleted projects can 
easily be removed – and successful projects can be saved! 

4. ROBOT HARDWARE DAEMON 

The Robot Hardware Daemon (RHD), a real-time device 
server, has been developed to cope with the increasing 
diversity of the supported mobile robot platforms. In 
opposition to related initiatives such as Player or CARMEN, 
RHD is limited to be a lightweight hard real-time hardware 
interface. Signal processing at RHD level are limited to 
protocol interaction and simple security functions as 
emergency stops.      
 
RHD is a real-time synchronized variable database. The 
variable database structure provides great flexibility, but it 
also helps to enforce a clean cut interface between the various 
hardware formats and a user-manageable API without 
enforcing specific device abstractions. RHD is also the 
primary real-time control scheduler in the MobotWare 
framework, so much effort was used to analyze the behaviour 
of scheduling mechanisms in Linux, and to create a robust, 
lightweight and flexible real-time safe implementation.  
 
There is a balance of keeping compatibility to a traditional 
desktop Linux distribution and meeting the requirement of 
hard real-time performance. As described in the scheduler 
section, both objectives have been achieved. 
 
RHD consists of a set of core components, and a range of 
specific hardware driver plug-ins. The core components 
create the basis for a variable database, TCP/IP server and the 
real-time scheduler. Plug-ins creates the support of hardware 
devices, by managing hardware I/O, pre/post-processing and 
database interface. 
 
All setup of RHD is based on a XML configuration file, 
which contains the setup parameters for the core components 
and plug-ins to accommodate any supported hardware 
configuration. 

4.1  Variable Database 

The variable database defines the functionality of RHD. 
Upon initialization, all plug-in modules create the I/O 
variables they need; subsequently the database is locked 

when going into hard real-time mode. The database itself is 
based on a variable symbol table and an associated data area.  

• The symbol table defines the static information 
regarding the variables and bookkeeping information.  

• The data area is one continuous memory pool, 
containing the dynamic data and a time stamp.  

 

4.2  TCP/IP Server 

As the only service connection in MobotWare, the RHD 
protocol is binary to improve performance in the real-time 
environment. To minimize the data-flow, the symbol table is 
only transferred to a client in a initial hand-shake. After the 
handshake, only dynamic data is exchanged. 
 
Only one master client is able to write to RHD variables, but 
multiple read-clients are supported to give data access for the 
non real-time layers and operator interface.  
 

4.3  Real-time Scheduler 

Besides being a networked variable database, RHD is also the 
main real-time scheduler for low level robot control 
applications, such as MRC. The MobotWare framework is 
expanding to support new robots and as some of these 
hardware platforms are big, powerful, and heavy, fault 
tolerance and especially real-time performance are critical. 
Hard real-time performance is not generically supported by 
the Linux kernel, as there is no support for kernel 
preemption. In projects, as RTAI (Mantegazza et al., 2000) 
and RT-Linux (Bruyninckx, 2002), this is solved by patching 
the kernel with a second scheduler, which allows tasks to 
work in kernel priority levels and with full kernel 
preemption. Our RT-implementation of choice is the Linux 
Real-Time Application Interface (RTAI). Linux itself, 
provide some means of achieving soft real-time performance. 
RHD is capable of operating satisfactory on a standard Linux 
distribution and with enhanced stability and real-time 
performance using the RTAI scheduler.  
 
All scheduling in Linux happen with the period of the 
scheduler, the so-called jiffy (Abbott, 2003). Previously in 
Linux, this frequency was normally set to 100Hz, but 
seemingly the default of the vanilla kernel is now 250 Hz. 
This creates a period of 4 ms and makes it impossible to 
obtain a steady 10 ms control cycle. Fig. 2 show the timing of 
a Linux Interval-timer interrupt, set at a 10 ms target period 
on an X86 VIA C-3 platform and on an Atmel 130 MHz 
AVR32 NGW100 Linux evaluation board, both with a 250 
Hz kernel scheduling frequency. 
 
When trying to achieve a period, that is not divisible with the 
scheduler period, the timer will simply alternate between the 
two closest scheduler ticks and thus create an accurate 
average timing period. This might be reasonable, if the timer 
period is much larger than the scheduler period, but for real-
time, high frequency robot control it is highly undesired.  
 
When compiling the 2.6 Linux kernel, it is possible to set the 
scheduler frequency for 100, 250, 300 and 1000 Hz. To run 
RHD using the Linux scheduler, the scheduler loop period 



 
 

     

 

must be carefully selected as a multiple of the Linux 
scheduling period. 
 

 
Fig 2.  Scheduler periods with 10 ms target on a kernel with 250 Hz 
scheduling frequency. Timer periods alternate between 8 and 12 ms to obtain 
an average 10 ms period. 

 
For hard real-time performance RHD uses the LXRT module 
and RT-FIFOs from RTAI to obtain real-time scheduling in 
user space.  
 
4.4  Plug-in architecture 

Specific hardware drivers are implemented through a plug-in 
structure where each plug-in creates the I/O control variables 
in the variable database. Control variables are used to transfer 
data from and to hardware devices, but also offer the 
possibility for configuring the driver plug-in dynamically. 
 
4.4.1  AuSerial plug-in 

An important is feature of RHD is a simple and easy 
configuration of new low level sensor devices. To make it 
simple to add new devices to the interface bus, and easy to do 
simple reconfigurations, the AuSerial plug-in was developed. 
Using AuSerial, newly developed devices can be introduced 
in the entire MobotWare architecture and configured on SMR 
RS-485 bus by a XML configuration and without writing a 
single line of C-code. 
 
4.4.2 Other hardware plug-ins 

Besides the AuSerial plug-in, a number of hardware plug-ins 
has been written for RHD to support a range of hardware and 
a simulator. 

• Stage Simulator 2.1.1 

• iRobot r-Flex interface 

• RTK and NMEA GPS interface 

• Crossbow IMU-400 and Fiber Optic Gyro 

• HAKO tractor CAN-bus control interface 

• Claas Axion tractor CAN-bus control interface 
 

5. MOBILE ROBOT CONTROLLER 

The mobile robot controller (MRC) is providing the basic 
low level real-time control of the mobile robot platform. It 
uses RHD (Robot Hardware Demon) as an interface to the 
actual robot hardware. MRC has the following features 

• Odometry 

• Motion controller 

• SMR-CL interpreter (Andersen, 2004) 

• Socket interface to high level controllers  

• XML-based socket interface to sensor servers 

• Socket interface to RHD 

• XML-based configuration file 

• Calibration support for odometry, line-sensors and 
distance sensors. 

 
The odometry is based on wheel measurements and inertial 
sensors e.g. gyros. It is configurable using an XML-based 
configuration file for several kinematics: differential drive, 
Ackerman steering and vehicles described with linear and 

angular velocity (v, ω). 
The motion controller provides the basic path control based 
on odometry as well as sensor based movements for the 
following SMR-CL commands: 

• fwd point to point forward motion  

• turn turn around center 

• drive continuous linear motion  

• turnr circular movement with given turning radius 

• stop 

• followline follow a line on the floor (painted or buried 
wire depending on sensors) 

• followwall follow a wall using e.g. infrared distance 
sensors or laser scanner 

Small Mobile Robot Control Language, SMR-CL (Andersen, 
2004), (Jørgensen et al., 2008) is an interpreted language 
intended for control of mobile robots. The language supports 
sequences of basic robot actions with multiple criterions for 
seamless motion gluing as well as standard mathematical 
expressions. The system has two kinds of variables, system 
variables that reflect the state of the vehicle and user 
variables that are created the first time they are used in an 
assignment clause. The language is intended to be used in the 
tactical layer just over the control layer i.e. it is fast enough to 
shift between control strategies and react to state changes in 
real time. SMR-CL provides the bridge between the hard 
real-time demands of the control layer and the soft real-time 
demands of the planning (strategic) layer. The language may 
be used in two ways either as scripts runs directly from text 
files or as a command language through a socket interface.  

 
6. AUTOMATION ROBOT SERVERS 

Sensors with high data volume – like cameras and laser 
scanners – usually require time consuming data processing. 
This is not easily compatible with the real time requirements 
of the motion control. 
 
Each sensor is often used for more than one purpose, e.g. the 
laser scanner may be used for detecting obstacles, for wall 
following, for human detection and emergency stop. An 
architecture, which supports sharing of sensor data, is 
therefore essential. 
 
More than one processor unit is often needed when 
processing data from these high volume sensors. A 
standardised communication interface is therefore beneficial. 
In a university environment new functionality is often 
developed by students. It is therefore important, that the 
development can be done in independent groups and within a 
limited time frame. The architecture and programming 



 
 

     

 

interface must therefore be reasonably simple, and it must be 
easy to add (and remove) the developed modules without 
influencing other parts of the software.  
 
The MobotWare solution to these challenges is a set of 
servers called AURS. A typical AURS configuration consists 
of a camera server, a laser scanner server and a mission 
management server. 
 
Each server consists of a server core that provides a number 
of general services to the functional plug-ins.  
These services include: 

• Management for loading, unloading and configuring plug-
ins dynamically 

• Communication services (socket based) 

• Event handling (generation and implementation) 

• Server wide shared plug-in variable tree 

• Plug-in to plug-in communication 

• Direct access to base plug-ins (like laser sensor plug-in and 
pose history) 

• API for common tools (like linear algebra, coordinate 
conversion and image algorithms from openCV.   

• Data logging and replay services 
 

As an example the perception laser scanner server could be 
configured as shown in Fig. 3. There is a plug-in to maintain 
the recent robot pose in each of the maintained coordinate 
systems (odometry and map coordinates), these are capable 
of providing the robot pose at any given (sensor) time. The 
laser scanner plug-in provides (raw) laser scanner range data 
and the laser scanner pose – relative to the robot. The other 
plug-ins uses the sensor data to create and maintain a specific 
perception model. 

 
Fig 3.  The AURS structure, with server core and functional plug-ins 
 

The communication to and from a plug-in (apart from the 
internal plug-in to plug-in function calls) is handled by the 
server core using XML based messages. Each plug-in handle 
commands formatted into one or more XML tag types, and 
thus can share the same server provided socket connection. 
 
A plug-in can also trigger an event – an event could be that a 
new lasers scan is available – the server may then be 
configured to react by sending an XML command to other 
plug-ins, e.g. to update the wall and obstacle model. Update 
of the obstacle model could trigger a further event, e.g. to 
start a new behaviour generation. 
As described here, both sensor processing and part of the 
perception model is handled in one server. This is intentional, 
as the high volume data flow from the sensor plug-in to the 
perception plug-in in this way is kept internally in the server. 

The reduced data flow from the generated model is 
communicated to other servers only. 
 
The server structure allows both client-pull data flow – send a 
command and get a reply – and server-push data flow, where 
data is send as a response to an event. Timed events are 
supported directly by the server core. 
A large number of plug-ins are available, these include:  

• a laser scanner plug-in, supporting Sick and Hokuyo 
scanners,  

• a camera device plug-in. 

• a MRC interface plug-in for easy access to real time data 
and behaviour commands 

• a road detection plug-in using a slightly tilted laser scanner 
(Andersen et al., 2006a) 

• an obstacle detection plug-in using laser scanner data 

• an obstacle detection plug-in using stereo camera data 

• a road detection plug-in using single camera data 
(Andersen et al., 2006b) 

• a localization plug-in combining laser scanner and a-priori 
map (Tjell et al., 2008)  

• a plug-in that implements a rule based mission scheduler 

• a mission manager plug-in  

• an obstacle avoidance plug-in based on visibility graph.  
 
Data recorded from laser scanner, camera, GPS and robot 
pose can be replayed based on log files from each of the 
relevant plug-ins and synchronized by the server core. The 
replay ability eases development of especially perception 
plug-ins significantly. 
 
An operator interface is available to interact with all servers 
and all plug-ins, and display also some of the more complex 
data structures. An example from the operator display is 
shown in Fig. 4. 

 
Fig. 4.  Operator interface example, illustrating traversable road (green) and 
obstacles (purple) after treatment of the perception plug-ins. 

 
7. APPLICATIONS 

The MobotWare framework has been used with great success 
in education and several research and innovation projects. 
Using the plug-in structure of the real-time hardware daemon 
(RHD) seven different hardware platforms have been 
interfaced ranging from an 8 kg educational robot to the 7.5 



 
 

     

 

tonne 240 bhp Claas Axion 840 tractor (Fig .6). This means 
that systems based on CAN-bus, Profi-bus, RS232, RS485 
and USB have been interfaced demonstrating the versatility 
of RHD. 

 
 Fig. 5.   Autonomous grass cutting between orchard tree rows using 
topological feature-based localization in tree rows through the MobotWare 
framework.  

 

The scalability obtained by having modules communicating 
via sockets has been demonstrated by implementing a small 
system on an Atmel 130 MHz AVR32 NGW100 Linux 
evaluation board while vision intensive mobile robot systems 
have been implemented using several computers. 
 
The inclusion of the robot control language in the system 
makes it programmable by non technicians and allows fast 
implementation of test solutions. 
The efficiency on the language is seen in our basic robot 
course where the students have to make a C-solution and an 
SMR-CL solution to the same problem. They use 10 times as 
much time on the C-solution and score 30 to 40 % more 
points in the SMR-CL solution during the final competition. 
 
In the innovation project “Safe + Reliable - Further 
Development of a Field Robot”, the MobotWare framework 
was used to develop robust control of a field robot (Fig. 5). 
The system implements a localization system based on fusion 
of laser based tree row detection and gyro assisted odometry. 
Autonomous driving in an orchard with 10 rows thus 
including headland turns has been demonstrated. This shows 
that the modular plug-in structure allows implementation of 
complex robot control systems (Andersen et al., 2010).  

 
Fig. 6.   The Agrocom stereo vision equipped Claas AXION 840 runs 
MobotWare for autonomous field operations.  

 
8. CONCLUSION 

The mobile robot software framework presented in this paper, 
MobotWare, fulfils the requirements for a stable 
comprehensive framework capable of utilizing and 
controlling a large number of robot hardware platforms and 
sensors. MobotWare consists of three distinct layers, the 
RHD as the hardware abstraction layer, the MRC as the real-
time robot controller and the AURS a server structure for 
quasi real-time perception and behaviour planning. The 
framework has been developed over a number of years in a 
university environment and been used in a large number of 
courses, projects and applications. 
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